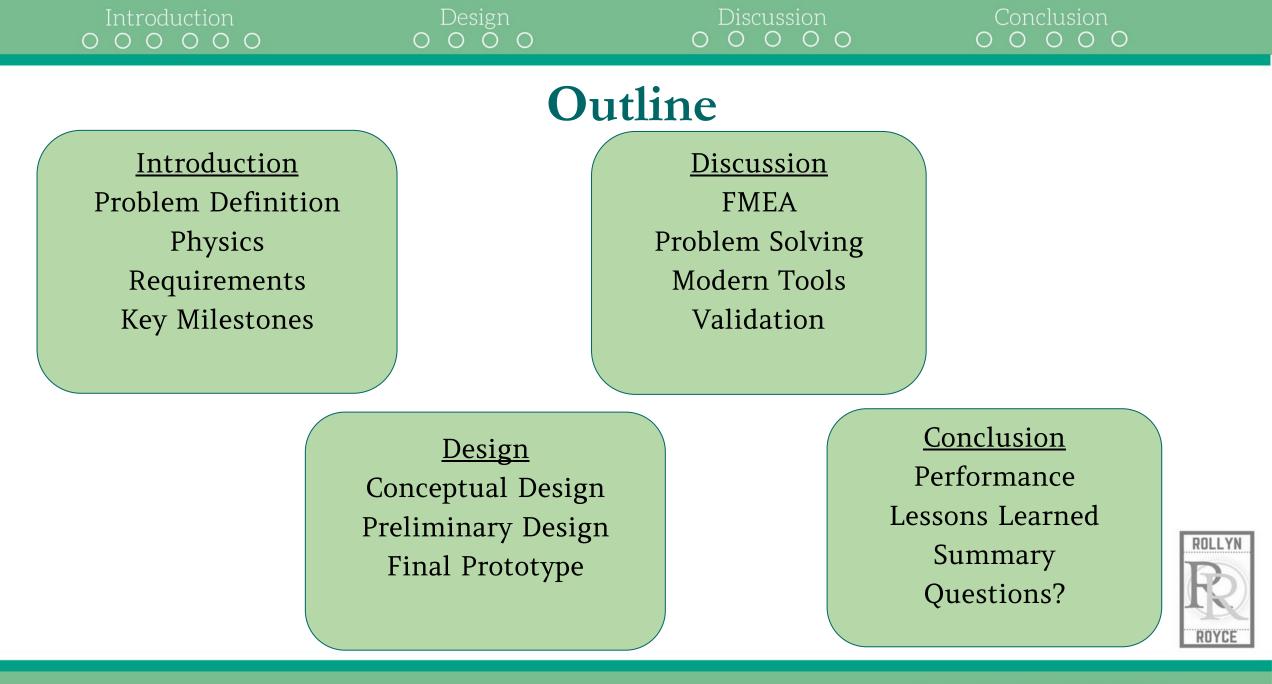
Team 8: Trains & Cheesecake

0 0 Ŏ O

Introduction


Gaid Saed, Jessi Rocha, Steven Gomez Thomas Chengattu, Jennifer Jones, Jesse Deleon

0 0 0 0 0 0

Conclusion


Problem Statement

Design

Modern wheelchair lack multiple modes of propulsion; currently models mostly focus on moving wheels using wrist motion. Causes repetitive stress injuries and suboptimal propulsion modes.

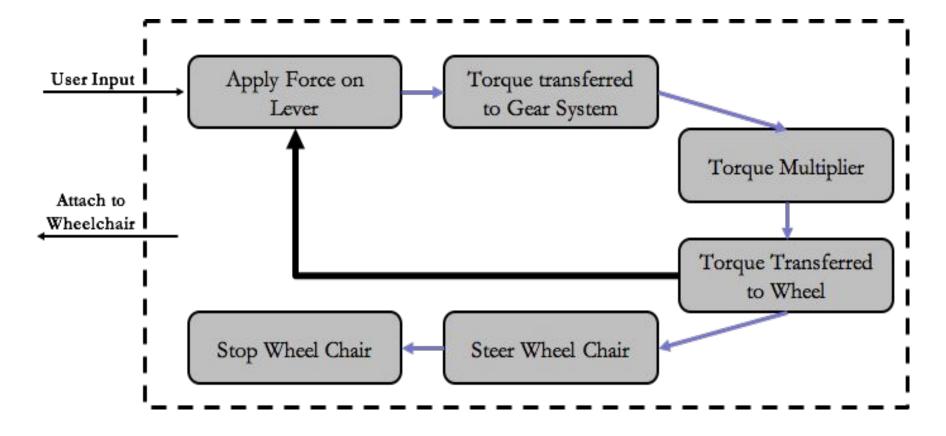
Introduction

Consider...

Discussion

- How to prevent injury to wrist from repetitive stress?
- How to allow users to climb slopes better?
- How to make wheelchair use for novice individuals easier?

 $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$


Function Block Diagram

Design

0 0 0 0

Introduction

0

Function Block Diagram - Provide overview of product's functions to address and/or consider

Physics Development

Design

 \bigcirc

 $\circ \circ \circ$

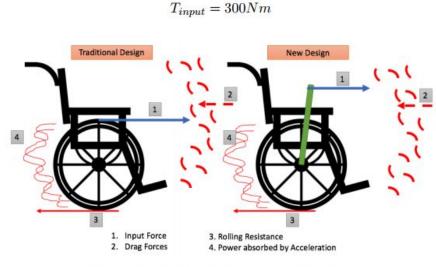
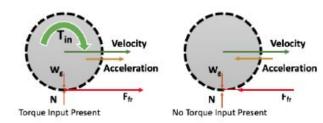
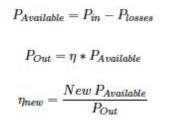



Figure 5.13: Defining Physics for Propulsion

**When input Torque is present opposing torque from friction counteracts the moment. When no torque is present, the friction changes direction to prevent motion

Figure 5.14: Defining Physics for Rolling with 'No-Slip'


1. Energy Equation Used to Compute power in vs. Power out

Discussion

 \bigcirc

0 0 0 0

 $P_{Losses} = P_{Drag} + P_{RR} + P_{Translation} + P_{Rotation}$

2. Static & Kinematics equations used to calculate the acceleration of the system and th($F_{1R} = T_{Normal}$ $F_{1L} = T_{New}$ ed

$$\frac{T_{Normal}}{R} = \frac{T_{New}}{L}$$

$$\Rightarrow \frac{N_1}{N_2} * L * \frac{T_{Normal}}{R} = T_{New}$$

$$\sum F_x = MA_{cc} = F_{friction}$$

$$\sum F_y = 0 = N - W$$

$$\sum M_{center} = T - F_{friction} * R = I * \alpha$$

$$A_{cc} = R * \alpha$$

Conclusion

0 0 0 0 0 0

Design

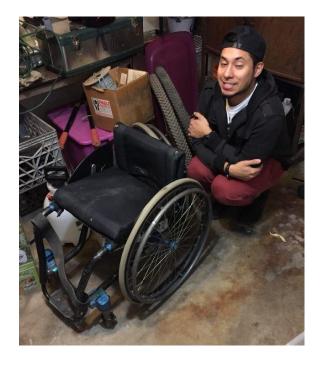
Discussion

Conclusion 0 0 0 0 0

Requirements

Voice of the customer needs
Better propulsion efficiency
Gear Reduction
Compactable
Lighter weight
Durable
Safety

R	equirements
P	ropulsion Efficiency
2:	x effective for trans
U	Isability
D	ourability
T	ip angle
L	ever Optimization
W	Veighs less than 10lb



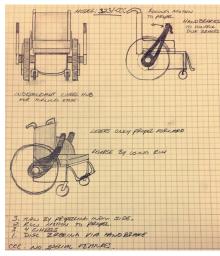
Design OOOOO

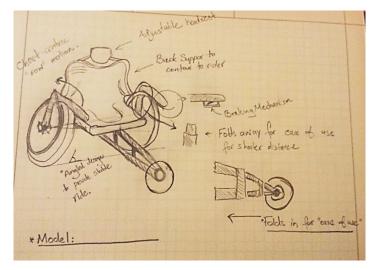
Discussion

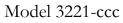
Conclusion OOOOO

Key Milestones

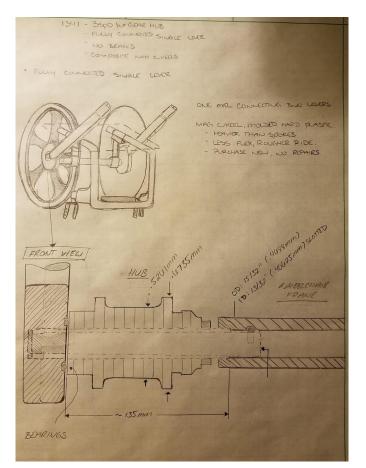
Wheelchair donation


Left side drive


Major design modification

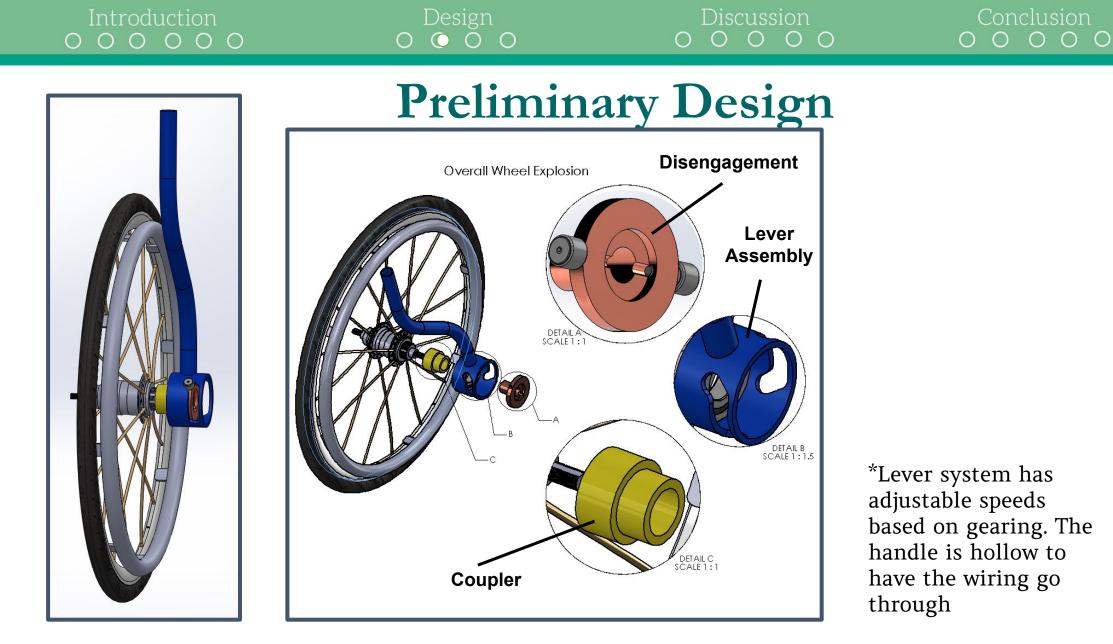


Introduction 0 0 0 0 0 0


Model 3231-ccc

Conceptual Design

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc


0 0 0 0 0

Model 1131-ccc

0 0 0 0 0

ROLLYN

Detailed Design

 $\circ \circ \circ \circ$

ROLLYN

ROYCE

Final Prototype

Design

Conclusion 0 0 0 0 0

Failure Mode Effect Analysis (FMEA)

		02.07	3.9	<u></u>	- CO - 10	A			200 - 20		19	100	A	ction R	esults	<u>15 - 1</u>	
	Part Name	Function	Potential Failure Mode	Potential Failure Effect	5 E V E R I T Y	Potential Causes/Mechanisms of Failure		Current design Controls	DETECTION	RPN	Recommended Actions	Responsibilit y & Target Completion Date	Action taken	pS	рO	pD	prpn
1	Lever	Method for introducing energy into the propulsion system.	Structural Faliure; Bending or Breakage of lever	Immobility, Pinch point created, User's safety is endangered	8	Sheer stress exceeds yield stress of material due to excessive tnagential load	5	Physical inspection.	2	80	Design Change to eliminate stress concentration. Choose material with appropriate /high	Steven 02/10/2017	Redesigned Lever and choose better material.	8	4	2	64
3	Axel support	Helps as supporting componet & imparts rigidity to structure stability.	Structural failure, bending and sheering	Fracture leading to dislocation of structural components which in turn leads to mechanical and structural	10	High impact loading at site by external forces	4	FEA analysis for loading.	3	120	Redesign to resist stress fracture and increase FOS	Jessi 3/10/17	Choose materials with high yeild stress and conducted effective	8	4	2	64
4	Tires	contact with ground. Allow for acceleration, cornering and braking whatever	Puncture and wear	Inability to operate vehicle effectively vehicle & drivers safety compromised	6	Sharp object penatration, constant use	8	Visual Inspection	3	144	Restore tire pruessure.	All 3/10/17	none	6	7	2	84
	Rim	outer circular design of the wheel on which the inside edge of the tire is mounted to the	Mechanical failure	Inability to operate vehicle, vehicle & drivers safety compromised	10	Damage by hight impact or excessive loadings	4	FEA analysis for loading.	7	280	Verification of proper specification and testing	All - 03/15/17	varified specification s with ANSYS	8	3	5	12
5	Bearing	constrains motion between moving	Mechanical Faliure, wear out.	Deterence to steering &/or vehicel motion.	8	Lubrication loss, contamination, improper mounting etc	4	FEA analysis for loading.	6	192	Proper Lubrication and Check alignment & provide Shielding.		varified specification s with ANSYS	6	3	4	72
,	Gears	Alter power input	Bending or grinding of gears.	Faliure to propel wheelchair.	8	grinding of gear teeth, improper alignment of gears.	3	FEA analysis for loading.	4	96	Check for alignment, Lubrication & use material of higher strength & wear	Jessi - 03/15/17	varified specification s with ANSYS	6	2	3	36
3	Wheel	Roates on Axle bearing, moves wheelchair.	Breakage and structural failure due to excessive or	wheelchair. Damage to driver & wheelchair in undesired	8	Yeilding / Bending of Wheel rim or spokes	4	Visual Inspection	3	96	Modify the wheel design to eleiminate stress concentration, & increase F.o.S	Jesse - 03/15/17	Redesigned Wheel (Spokes) & Increased FOS.	6	3	2	36

Conclusion 0 0 0 0 0

Failure Mode Effect Analysis (FMEA)

9	Lever Tube	Method for introducing energy into the propulsion system.	Structural Faliure; Bending or Breakage of lever	Immobility, Pinch point created, User's safety is endangered	7	Sheer stress exceeds yield stress of material due to excessive tnagential load	6	Inspection. Iaboratory test Under worst case	5	210	eliminate stress concentration. Choose material with appropriate /high	All - 03/15/17	Redesigned frame & Increased FOS.	5	5	4	100
10	Disengagement Support	Helps as supporting componet & imparts rigidity to structure stability.	Structural failure, bending and sheering	fracture leading to dislocation of structural components which in turn leads to mechanical and	8	High impact loading at pin site by heavy user	4	Laboratory test for gradual & Impact Loading,	5	160	Redesign componet diameter to resist stress fracture and increase FOS	Thomas - 03/15/17	Choose materials with high FOS; Effective design and analysis	6	3	4	72
11	Coupler	Connects lever to internal gear hub	Structural failure, bending and sheering	Faliure to move wheelchair, user injury	8	High loading and collison	3	Physical and Visual inspection.	7	168	eliminate stress concentration. Choose material with appropriate /high	All - 03/15/17	Choose materials with high FOS; Effective	6	2	5	60
12	Roller	Disengages lever from coupler	Structural failure, bending and sheering, Mechanical Faliure, wear	Faliure to disengage lever, and use wheelchair normally	8	High loading and collison, frequent use	3	Physical and Visual inspection.	6	144	Design Change to eliminate stress concentration. Choose material with appropriate /high factor of safety(FOS).	Jessi - 03/15/17	System redesigned & Roller modified/lub ercation.	6	2	4	48
13	Spring	Removed from Part during Preliminary design			7					0							0
14	Fixed gear hub	To give the user a mechanical advantage through	Structural failure, bending,	Faliure to move wheelchiar	8	High loading, collison, wear, and enviromental affects	2	Laboratory test for gradual &	3	48	Design wheelchair so that hub is protected for	Jessi - 03/15/17	besigned a type of housing for	6	2	2	24
15	Wheel Nipples	Connects Rim with each spoke	Bending, Rust or Surface Tear	Separation of Spoke and Rim, Faliure to move	6	High Loading, Proper material not chooses, Environmental effect.	3	Visual Inspection	6	108	Change to alloy nipple as against brass.	All - 03/15/17	Material Change action taken.	4	2	4	32
16	Spokes	Connects wheel hub to spkes.	Structural Faliure; Bending.	Flaiure to move wheelchair, Risk of injury to driver.	6	High Loading, Collision and Impact Loading.	5	Lab test for strength, Visual Inspection	3	90	Increase F.o.S and Modify to use more spokes per unit load.	All - 03/15/17	Redesigned, And Number of spokes increased	5	4	2	40

ROLLYN

ROYCE

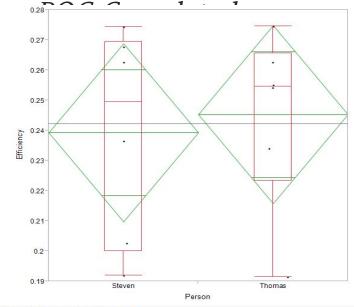
		XXXX
#1: Accommodating Traditional Hubs; Re-design of left side with multiple gears	#2: Research specifications for different hubs to integrate into design	#3: Design entirely new internal hub
Pro: Cheap; Available variety	Pros: continuing forward with design determined	Pros: extensive application of design skills
Con: Timing affecting fabrication & re-designing	Con: Expensive; Adjusted accordingly	Con: amount of time; complexity of solution; level considered a whole other capstone project

0 0 0 0 0

Problem:

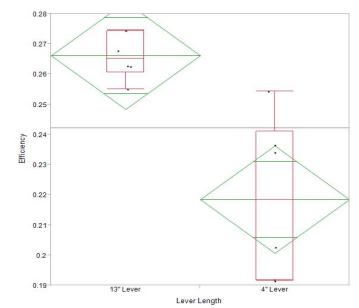
- Conceptual design phase
- Determined current common internal hubs only work in one (1) direction

Conclusion 0 0 0 0 0 O O O O


Discussion

Conclusion

Example Testing: Proof of Concept


Propulsion Efficiency:

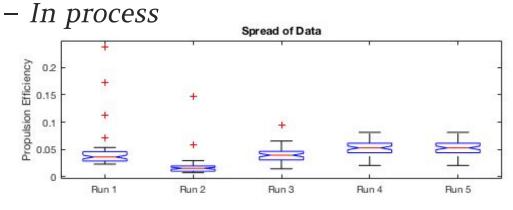
Testing the Efficiency of Power in (Calories) to Power (Out) - Watts Produced

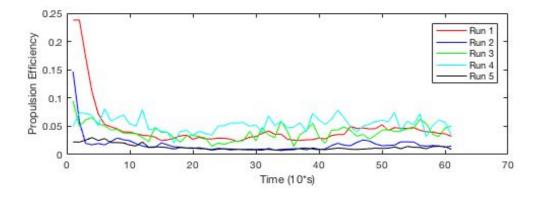

Analysis of Variance

		Sum of			
Source	DF	Squares	Mean Square	F Ratio	Prob > F
Person	1	0.00010924	0.000109	0.1036	0.7541
Error	10	0.01054080	0.001054		
C. Total	11	0.01065004			

Analysis of V	arian	ce			
Source	DF	Sum of Squares	Mean Square	F Ratio	Prob > F
Lever Length	1	0.00682481	0.006825	17.8416	0.0018
Error	10	0.00382522	0.000383		
C. Total	11	0.01065004			

(b) Test-user Low & High Position


Design OOOOO


Conclusion 0 0 0 0 0

Example Testing:

Propulsion Efficiency:

Testing the Efficiency of Power in (Calories) to Power (Out) - Watts Produced

	Grand Population	1	2	3	4	5
Mean	0.034076663	0.046591	0.017827	0.0391722	0.0537143	0.01307762 5
STDDev	0.027224142	0.041356	0.018350	0.013826	0.012902	0.00527

 $P_{out} = I\omega\alpha$ $P_{in} = Calories$

000000 0 0 0 0 **Modern Tools** von Mises (N/m^2) 2.594e+008 2.378e+008 von Mises (N/m^2) **ANSYS and Solid Works** 2.162e+008 1.342e+007 1.945e+008 1.231e+007 1.729e+008 1.119e+007 1.513e+008 1.297e+008 1.008e+007 1.081e+008 8.963e+006 H: Dissup Equivalent Elastic Strain Type: Equivalent Elastic Strain 8.647e+007 7.849e+006 6.486e+007 6.735e+006 4.325e+007 Unit: m/m Time: 1 3/8/2017 9:36 PM 2.163e+007 5.620e+006 1.711e+004 4.506e+006 → Yield strength: 5.050e+008 0.00060382 Max 3.391e+006 0.00053676 0.0004697 2.277e+006 0.00040264 1.163e+006 0.00033558 0.00026851 4.848e+004 0.00020145 Yield strength: 5.050e+008 0.00013439 6.7328e-5 2.6648e-7 Min E: Coupler Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: Pa Time: 1 3/8/2017 8:39 PM 2.5183e8 Max 2.2385e8 0.03 (m) 1.9587e8 1.679e8 1.3992e8 1.1194e8 8.3957e7 5.5977e7 2.7998e7 18374 Min ROLLYN

ROYCE

Design OOOOO

Discussion

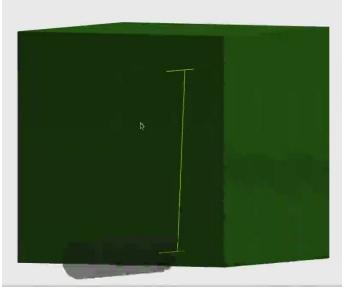
Conclusion OOOOC

Modern Tools

Manufacturing

- ≻ Lathe
- > Welding

Modern Tools


0 0 0 0 0

Fusion 360 and Tormach (CNC machine)

CYCLE START

29,148

SINGLE BLOCK

- SolidWorks (CAD)
- AutoDesk Fusion (CAD)
- Autodesk CAM tools (CAM)

ROYCE

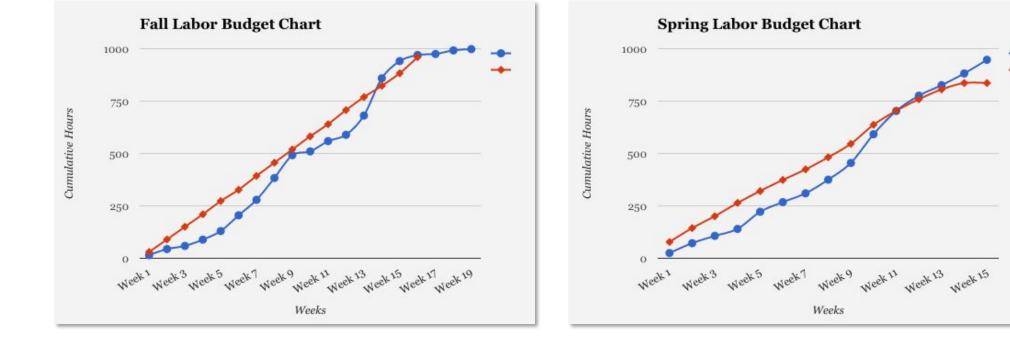
00000

Validation

No.	Requirement	Method of Validation	Testing	Validation Status	
1a	Propulsion Efficiency ≈ 20%	Hand Calculations	Use Engineering Equations	Complete]
1b	Propulsion Efficiency ≈ 20%	Physical Testing	Heart beat and Caloric usage vs Energy Input	Incomplete	
1c	Propulsion Efficiency POC	Physical Testing	Elliptical Lever Test	Complete]
2a	New design is 2x as effective for transportation	Hand Calculations	Use Engineering Equations 1:1	Complete	
2b	New design is 2x as effective for transportation	Hand Calculations	Use Engineering Equations for Hub specific	Complete	
2c	New design is 2x as effective for transportation	Physical Testing	Slope-Multiplier Loading Test	*Removed	ROLL
3	Usability and Everyday Use	Physical Testing	Functional Testing in a Building and Class environment	Complete	ROYC

Design OOOC Discussion

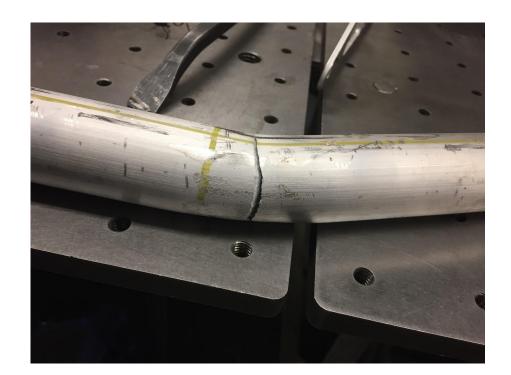
Conclusion 0 0 0 0 0


Validation cont.

4a	Durability and Strength	ANSYS	Load to last 50,000 cycles	Complete (Axel-fails)	
4b	Durability and Strength	ANSYS	Withstand 300N force applied to Lever	Complete	
4c	Durability and Strength	ANSYS	Withstand 200 lbs. Sitting	Complete (100 lbs.)	
5a	Tip and Tilt Measure	Solid Works	Find Center of Mass and Angle from vertical	Complete	
5b	Tip and Tilt Measure	Physical Testing	Tipping Angle Test as mentioned in ISO 7176-1	Complete	
6	Lever Optimization Test	Physical Testing	Member Test Cases for comfort	Complete	
7	Remain Under Budget > \$600	Final Receipts	(none)	Complete (\$698.17)	
8a	Physical product less than 10 lbs.	Solid Works	Weight Feature	Complete	
8b	Physical product less than 10 lbs.	Physical Testing	Weigh the prototype	Complete (9.834 lbs.)	ROYCE

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Performance



0 0 0 0

Lessons Learned

- Time Management
- Communication
- Manufacturing Techniques
- Testing Development

Conclusion

Design

Discussion

Conclusion

Summary

- Problem Statement
- Project Planning
- Design
- Testing
- Manufacturing
- Project Management

Questions?

