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Abstract—Designing energy-efficient optimal controllers for
vehicle control is an essential step towards achieving a ubiqui-
tous, environmentally-friendly autonomous transportation model.
This study explores the design and implementation of optimal
control strategies that minimize the energy used by an electric
car traversing a pre-established roadway. The explored control
strategies dictate the vehicle’s output driving force as a function
of its position on the chosen roadway through the minimization
of a highly non-linear cost function that is representative of total
energy use. The cost function is formulated subject to speed
constraints (due to road speed limits), power limitations (due to
physical limitations in the motor) and non-linear system dynamics
that describe the vehicle’s speed as a function of driving force
and road position. The study investigates the efficacy of several
control strategies based on Dynamic Programming (DP) and
Model Predictive Control (MPC) approaches and compares the
respective results. This study finally analyzes the feasibility and
pragmatism of implementing the above control approaches in
various real-world scenarios. A video summarizing this study
can be found here.

I. BACKGROUND

With the recent developments in sensor-based technology
coinciding with the consumer demand for cars that require
less human touch, the design and creation of autonomous
systems has been a major focus of the automotive industry.
It is estimated that over $80B has already been invested in
autonomous cars to date, with spending expected to increase
exponentially over the next decade [1]. Traffic congestion
alone costs Americans 6.9 billion hours and $160 billion
annually. The (even miniscule) increases in vehicle efficiency
that autonomous cars would provide through improved driving
profiles offers the potential for great economic and time-
saving benefits for society [2]. The need to develop strategies
that control cars in an energy-efficient manner is further
important in the context of reducing dangerous greenhouse
gas emissions.

In this study, the driving force of a fully electric vehicle
is controlled in an effort to minimize the vehicle’s energy
consumption over a pre-established pathway in Berkeley,
CA. Several control strategies based on DP and MPC were
implemented on the simulated system, and the strengths and
weaknesses of each control approach were analyzed.

II. SYSTEM DYNAMICS AND PROBLEM FORMULATION

This study models vehicle dynamics using a two-
dimensional approach that represents the electric car as a
point-mass for model approximation. It is assumed that the
developed model perfectly describes the system dynamics.
Process noise and exogenous disturbances are neglected and
only the forces that are explicitly stated are considered in the
model. A fully electric vehicle was chosen for this study (as
opposed to an ICE car) to avoid the necessity of including
changing gear reduction in the system model.

The system model was developed using many of the
concepts described in [3] and the 2017 Midterm in the
ME231A/EE220B class at UC Berkeley. Figure 1 shows a
free-body diagram that explains the major forces acting on
the proposed electric vehicle. The vehicle is subject to some
dissipative aerodynamic forces Fair, rolling resistance Froll, and
resistance due to the horizontal component of gravity Fgx .
The vehicle is propelled forward by the electric motor, which
provides Fdrive. The system model is below. Note that m is

Fig. 1: Free-Body Diagram of Vehicle

the vehicle mass, v is the speed, p is the vehicle position, k is
the position index, and θ represents the slope in the vehicle’s
path.
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In order to minimize the amount of energy consumed by the
car as it travels across the roadway, Fdrive ×∆P of the vehicle
must be minimized. A cost function that reflects this goal,
J(v0) along with the system constraints, is defined below.
Note that asterisks denote the optimal cost and Fair, Froll, and
Fgx are written in terms of their speed, mass and position
components.
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Fmin ≤ Fdrive ≤ Fmax

vmin ≤ vk ≤ vmax (2)

https://www.youtube.com/watch?v=5vB_YiypmJ4&feature=youtu.be
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The system state is the speed, v, which evolves non-linearly
as a function of position and forces acting on the vehicle.
The system input (and decision variable) is the input driving
force Fdrive. The length of the control horizon, N , corresponds
to the length of the path over which the vehicle will travel.
Further note that A, B, and C are vehicle-specific constants
that are derived from road load testings. Fmin and Fmax reflect
physical limitations of the system that arise from electric
motor constraints and vmin and vmax reflect the speed limits
of sections of the chosen pathway.

Since we are interested in minimizing the amount of energy
input (and not output), it is necessary to divide the output
power by the powertrain efficiency (i.e., ratio of power at the
wheels to power input from battery, η) in the cost calculations.
Because η is a highly non-linear function of vk and Fdrive,k,
the cost function is highly non-linear.

III. OPTIMAL CONTROL APPROACHES

Both DP and MPC approaches were investigated to control
vehicle speed as a function of position in order to minimize
energy consumption across the chosen path. Note that the
chosen path (Ashby BART Station in Berkeley, CA to the
Fung Institute at UC Berkeley) was qualitatively determined
to represent an “average” driving route in Berkeley, CA. The
chosen route is shown below in Figure 2.

Fig. 2: Chosen Vehicle Path for Control Strategy Implementation

The DP approach involves discretizing the state (i.e., speed,
v), input (i.e., driving force Fdrive), and position spaces to
generate a look-up table that correlates the measured speed at
a given position to the optimal input. The MPC approach first
solves an optimal control problem over a chosen prediction
horizon given a measured speed at a position. The solution to
this optimal control problem is a sequence of optimal inputs
over the prediction horizon. The first input in this sequence
is then applied to the system and the new state of the system
becomes the initial state for the next optimal control problem.
This pattern is then repeated over the entire length of the
chosen roadway (i.e., the optimal control problem is solved
recursively).

The highly non-linear nature of the powertrain efficiency
function, η, presents serious challenges for implementing
MPC in the system of interest. For reference, the powertrain
efficiency function was derived from a map of the car’s
motor efficiency (Fig. 3). The powertrain efficiency is the
product of the motor efficiency and the drivetrain efficiency
(which is assumed to be constant). Although several methods

Fig. 3: Power Efficiency
Note that the torque is directly related to the Fdrive

of calculating powertrain efficiency as a function of speed
and driving force were attempted (including creating three-
dimensional look-up tables and up to fourth order polynomial
fits), none were compatible with the nonlinear optimization
solvers with which we are familiar (e.g., fmincon, IPOPT in
a YALMIP environment). We did attempt to linearize the cost
function via Taylor expansion (using a polynomial fit for the
efficiency function). However, analysis of the curve indicated
that linearization would lead to highly inaccurate results. It was
additionally unclear which equilibrium input values should be
used for the Taylor expansion. Lastly, we tried to implement
an MPC control strategy that used the solution to the optimal
control problem with η = 1 as the initial guess for using
fmincon to solve an optimal control problem that included the
efficiency function. However, the fmincon solver was unable
to handle this objective function format as well.

As a result, the following control strategies were explored
and implemented on the chosen vehicle pathway mentioned
earlier: (1) DP with the efficiency function, (2) DP assuming
η = 1, and (3) MPC assuming η = 1. The results are discussed
in the next section.

IV. RESULTS

The optimal input and state trajectories for the three scenar-
ios outlined above are shown in the top two graphs in Figure
4 below. The bottom graph demonstrates the changes in slope
as a function of position along the chosen pathway.

Scenario #1 (DP control approach that properly accounts
for efficiency) yields expected results, as the speed almost
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Fig. 4: Optimal State Trajectory, Optimal Input Trajectory, and
Slope Along Chosen Vehicle Path

inversely scales with slope, and the upper constraints on speed
limits are easily met. Scenarios #2-3 on the other hand (i.e.,
MPC and DP assuming η = 1) demonstrate that incorporating
the powertrain efficiency function described earlier signifi-
cantly changes the optimal speed profile. As seen from Fig.
2, lower input torque and lower motor speeds yield lower
efficiency values. As a result, low speeds and low driving force
do not necessarily imply minimum cost because efficiency
penalizes the cost if the driving force and the speed are low.
Physically, this means that going too slow may not be the best
way to save energy.

The comparison between cost with and without powertrain
efficiency also supports this intuition. When efficiency is not
included, the best thing to do is to apply no input until
the speed decelerates to minimum speed. Then the vehicle
is maintained at the minimum speed unless a downward
slope allows an increase in speed without increasing the input
force. On the other hand, with the incorporation of powertrain
efficiency, the input is higher and makes much more sense.

V. DISCUSSION

This case study illustrates one of the primary advantages
of DP-based control approaches over MPC-based ones: DP
frameworks can handle highly non-linear constraints and cost
functions. The optimization tools required to implement MPC
on the other hand, are sensitive to the problem formulation.
Based on this case study alone, one could erroneously con-
clude that a DP control strategy is more appropriate for energy
minimization of an autonomous car. However, a real-world
controller would likely have more states than just the speed of
the car (e.g., car acceleration, distance to nearest car, among
many others) and more inputs than just the driving force (e.g.,
steering angle). Because DP suffers from the curse of dimen-
sionality, which implies that the computational complexity of
the problem scales exponentially with the number of states
and inputs, a DP-based optimal control strategy for a real-
world multi-state multi-input system is much more likely to

be computationally intractable than an MPC-based strategy for
the same system.

A real-world version of the controller described in this
study must also be able to account for unmeasured, exogenous
noise. Because DP-based control strategies are finite state
machines, they will likely not be able to properly account
for extreme exogenous disturbances in the same way that an
MPC-based approach (with online optimization) would. As a
result, although DP significantly outperformed MPC in this
study, a real-world implementation of this control strategy is
likely only feasible with an MPC-based approach.

VI. FUTURE WORK AND ACKNOWLEDGMENTS

The question now becomes: how can an MPC control
strategy be implemented to overcome the highly nonlinear cost
functions and nonlinear equality constraints in a real-world,
multi-state, multi-input version of this system? We will ex-
plore implementing MPC-based control strategies using more
advanced nonlinear solvers in environments that are less of a
“blackbox” than YALMIP (e.g., CasADI). This methodology
would likely be based off of direct single-shooting, direct
multiple-shooting, or direct collocation optimization methods.
We will further explore MPC-based control strategies that
account for mismatch between the system model and the actual
system dynamics, process and measurement noise, exogenous
disturbances, and incomplete state information. Such strategies
would likely fall under the categories of either ”Robust” or
”Stochastic” MPC to ensure constraint satisfaction and would
involve the use of Kalman filtering for state estimation.

We would further like to expand on this study by incorpo-
rating additional path roadways that have more extreme slope
gradients and harsher dynamic speed constraints. This can
simulate cars that must come to stops in extremely short dis-
tances and times, such as to avoid a collision. We would also
like to quantify how much controllers designed to minimize
energy consumption reduce greenhouse gas emmissions in
comparison with controllers that do not have environmentally-
conscious objectives. To do this, we would change our cost
function to minimize the amount of time to reach the final
destination (or to another desirable objective that is likely to
yield high energy use) and compare the energy implications
to our environmentally-conscious controller accordingly. We
finally thank Professors Borrelli and Packard for their time
and efforts guiding us through this class.
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